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AhstracL A two-parameter ( p , q )  deformation of the Japes-Cummings model is 
obtained using a recently developed ( p ,  q)defomed wcillator. In  the mtating wave 
approximation (RWA) the dynamical symmetry of the model is the quantum superalgebra 
up.s(lll). The panition function of the model is obtained as a path integral over 
generalized Perelomov mherent slates mrrespanding to the quantum algebra up,v(ll l) .  
The mmplele speclmm of lhe model is cltraned for both the o w  when the mupling 
mnstanls are Grassmann valued and when they are c-number valued. It is noted that 
a reiaration of the RWA extends ule dynamical symmetry lo the quantum superalgebra 
=Pp.,(212). 

1. Intmduction 

The Jaynes-Cummings (JC) model [l] provides an idealization of the interaction of 
matter with electromagnetic radiation by a Hamiltonian of a two-level atom coupled 
to a single bosonic mode. The dynamics of the model is supported by the Rydberg 
maser experiments [2,3] designed to detect the atomic coupling with a single photon. 
Using the Holstein-Primakoff method (41 the JC Hamiltonian may be described [5] in 
terms of a single fermionic mode coupled linearly with a bosonic mode. The fermion 
mode reflects the two-level structure of the atom. In a rotating wave approximation 
(RWA) a spectrum generating unitary superalgebra U( 111) describes [5] the underlying 
symmetry of the JC Hamiltonian. A ‘dressed’ version of the model relaxes the RWA 
and includes in the Hamiltonian the additional operators responsible for the virtual 
transitions and the two photon operators. The dynamical symmetry of the ‘dressed‘ 
JC Hamiltonian is h o w n  [S]  to be the Lie superalgebra osp(212). Recently, using 
a ~(111) coherent state construction [6,7], Kochetov [8] obtained a path integral 
representation of the partition function of the JC model and thereby extracted the full 
energy eigenspectrum for both the cases when the coupling constants are Grassmann 
valued and c-number valued. The eigenspectrum obtained in [8] agrees with the 
earlier results [5,9]. 

On the other hand, the quantized algebras [10,11] viewed as deformations of 
classical Lie algebras, depending, in general, on one or more deformation parameters 
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are of considerable physical and mathematical interest. The representation theory 
of the quantum algebras with a single deformation (or quantization) parameter 
led to the development of the qdeformed oscillator (q-oscillator) algebra [12-141. 
Using a q-oscillator description Chaichian ef a/ [15] investigated a qdefomed JC 
(q-JC) model with an intensitydependent coupling. The dynamical symmetry of the 
q-JC Hamiltonian is described by the quantum superalgebra uq(lll). Considering 
the quantum algebra su,,,(2), where p and q are two independent deformation 
parameters [16], the present authors obtained [17] a (p ,  q)deformed oscillator 
((p, q)-oscillator) realization for it. We may adopt the philosophy that quantum 
group inspired algebraic deformation is a way of building a model to account for 
small deviations, if any, from a standard one, with the deformation parameter@) 
as phenomenological constant(s) to be adjusted to fit the experimental data. The 
existence of the two-parameter deformation implies an infinite number of one- 
parameter deformations with the standard case corresponding to p = q. Hence, 
it is important to investigate the consequences of this fact in model building. 

Here we propose to study a (p,q)deformed JC ((p,q)-JC) model obtained by 
deforming the usual Bose degree of freedom to a (p ,  q)ascillator mode. In contrast 
to the Bose degree of freedom, the Fermi degree of freedom reflecting the two-level 
atomic structure is retained undeformed; when the Pauli principle is respected the 
deformation of an independent singie-mode fermion is actuaiiy uiviai jig, i9j. The 
dynamical symmetry of the (p,q)-JC model in the RWA may be recognized as the 
deformed superalgebra ~ ~ , ~ ( l l l ) ,  whose bosonic sector is u(1) @ u(1). Following 
Kochetov [8], we express the partition function of the (p,q)-Jc model as a path 
integral over generalized Perelomov coherent states corresponding to up,q( ill), and 
subsequently extract the energy eigenspectrum for the (p, q)-JC Hamiltonian. This 
procedure holds for both the Grassmann and the c-valued coupling constants. In the 
undeformed limit (p ,q  + 1) our results reduce to the well-known spectrum [5,9] 
obtained earlier for the Grassmann and the c-valued coupling constants. In an 
alternate description, A la Buzano ef a1 [5], we diagonalize directly the (p ,  9)- 
JC Hamiltonian for the Grassmann valued coupling constants and reobtain the 
corresponding energy spectrum. If the RWA is relaxed one may add to the (p ,q) -  

and the real two-photon processes. Then, the dynamical symmetry generated by the 
complete set of operators is the quantum superalgebra ospP,,(212). 

In section 2, we consider the dynamical 
symmetry of the ( p ,  q)-Jc Hamiltonian and construct the up,q( 111) coherent states. 
In section 3, we develop a path integral formalism over the ~ ~ , ~ ( l l l )  coherent states 
and extract the energy eigenspectrum from the knowledge of the partition function. 
Section 4 contains our conclusions. 
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This paper is structured as follows. 

2. A ( p , q ) J c  model with the dynamical symmetry 11~,~(111) 

lb set up the framework for introducing a deformed (p,q)-JC model, we first 
briefly review the aspects of the standard JC construction. Using the Holstein- 
Primakoti method [4], the JC Hamiltonian may be expressed [5] in terms of a pair 
or fermionic (f) and bosonic (b)  modes, satisfying the super-Heisenberg algebra 
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[ b , b t ] = l  { f , f ' ) = I  i 2 = 0  f ' 2 = O  
(2.1) 

[ b , f ] = O  [ b t , f ] = O .  

Maintaining the RWA which entails an exclusion of the energy-non-conserving and 
two-photon operator terms, the JC Hamiltonian takes the form 

ffj, = wb (b'b + f )  + wi (f'f - 4) + gbf' + b'fQ (2.2) 

where the coupling constants (g,B) are considered as either Grassmann or ordinary 
c-valued numbers. The Hamiltonian (2.2) is an element of the spectrum generating 
unitary superalgehra ~(111). Defining the even and the odd generators 

N = b t b + f t f  M = b ' b - f t f + l  Q = b f '  Q ' = b t f .  (2.3) 

The ~(111) commutation relations are 

[ N , M ] = O  [ N ,  Q 1 =  0 [ N ,  Q'l = 0 

[ M ,  Q 1 =  -2Q [ M ,  Q'l = 2Q' (2.4) 
{Q, Q'I = N Q2 = 0 Qt2 = 0. 

The relations (2.3) and (2.4) suggest that the Casimir operator N has non-negative 
integer eigenvalues, which label the irreducible representations (IRs) of the U( 111). 
Using the notation (2.3), the Hamiltonian (2.2) reads as 

Hj, = O N  + W M  + gQ + Q'B (2.5) 

where 

?b construct a ( p , q ) - J C  model we adopt the above prescription and use. a 
(p,q)deformed hosonic mode (&,&t ,  N s )  obtained [17] from the study of the 
representation theory of the quantum algebra su,,,(2). The corresponding deformed 
Heisenherg commutation relations [17] are, with p and q both real or p @  = 1 

The Fermi mode in (2.2) essentially reflects the two-level structure of the idealized 
atom and we keep it undeformed; as already mentioned above, the deformation of 
an independent single-mode fermionic degree of freedom is actually trivial [18] with 
f 2  = f t 2  = 0. Maintaining the RWA structure, we consider the ( p ,  q ) -K  Hamiltonian 
to be given by 

H = O[fl] + w[l;r] + gQ + Q'B (2.8) 
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where 
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q" - p-' 

9 - P-' [XI = 

and 

N = N g + f ' f  n;r=N6-f ' f+1  Q = B f '  Q'ZB'f.  (2.10) 

The dynamical symmetry of this Hamiltonian is the quantum superalgebra ~ ~ , ~ ( l l l )  
with the commutation relations 

[ N , R ] = O  [ N , Q ] = O  [ N , Q ' ]  = 0 

{Q,Q'] = N Q2=0 0 ' 2  = 0. 

(2.1ij r n-J At, - l i l t  
L'"1, 'I', = LW. r a - r  hi ~ -6 

L'"1 1 'I1 - -Lw 

It may be noted here that the deformation of a given Hamiltonian is not unique. The 
general guiding principle available now is the correspondence principle by which one 
would require the deformation to disappear in the appropriate limit. Thus, in (2.8) 
one may take the bosonic part to be an arbitrary function of fl and k with the 
correct limiting behaviour. The procedure outlined below to obtain the specturm of 
H in (2.8) is quite general and can also be adopted when one has arbitraly functions 
of N and hi in the bosonic part. 

For the algebra (2.11) we choose the non-negative integer Casimir operator N and 
/ t i  ( = ( A J  - A + 1)/2)  as the complete set of commuting operators. Selecting an 
integer n > 0, we choose the basis states {In,  I) I I = ( 0 , l ) )  of the IR of up,q(lll) 
as 

iirln , I) = nln , I) f' f In , I) = I ln  , I) . (2.12) 

For n = 0, the IR is one-dimensional 

N10,O) = 0 f'fl0,O) = 0 .  (2.13) 

The other generators act on the basis states as 

filn, I) = ( n  - 21 + 1)ln , I )  
(214) 

For the choice of the coupling constants (g,p) as Grassmann numbers, we 
diagonalize the Hamiltonian (2.8), A la Buzano er a/ [SI, and obtain the energy 
eigenspectrum. Tb this end, we use a similarity transformation 

Hdjae = exp(i)Hexp(- i )  (2.15) 

where 

f = - ( w ( [ n  + 11 - [n  - l]))-'(gQ - Q'B). (2.16) 
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The corresponding energy eigenvalues are 

EL = w 

and 

(2.18) 

The spectrum given by (217) and (2.18) agrees with the known result [5] in the 
undeformed ( p , q  + 1) limit. 

We will devote the remaining part of the present section to the construction of 
the Perelomov-type coherent states for the quantum algebra up,q(lll).  In the sector 
n > 0, let us define the ~ , , , ~ ( I l l )  coherent state as 

In;e) = exp(-eQ+)ln,i) = in, 1) - meln,o). (2.19) 

It is easily seen that 

+ ; e )  = [n]eln;e). (2.20) 

(n;fln;e) = exp( ln1W.  (2.21) 

The overlap of WO states is 

The integration rules for the Grassmann variables are as follows 

dB0 = 1 / d e  e = 1 . (2.22) J d e = O  J dB = 0 J 
Far n > 0, the completeness relation 

reads in the coherent state description 

(2.24) 

The trace of an operator in the wo-dimensional space { In, I) I n > 0, I = 0 , l )  has 
the coherent states representation 

(2.25) 

In the first equality in (2.25), the suffix 'n' in the LHS denotes a summation over IR 
with a fixed value of n(> 0). For use later, we obtain here the following matrix 
element of the Hamiltonian (2.8) 
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3. A functional integral over the ~ ~ , ~ ( l l l )  mherent states 

In this section, we develop, A la Kochetov [8], a path integral description of the 
( p ,  q ) x  partition function. The partition function is expressed as a sum over the 
partial traces 

R Chakrabarli and R Jagannathan 

W 

Z = Tr{e-BH) = Z, + Z, (3.1) 
n=l  

2, =Tr,{e-BH) = J ~ e x p ( [ n ] 8 8 ) ( n ; e ~ e x p ( - p H ) l n : O ) .  (3.3) 

Using the standard construction for the path integral for an imaginary time interval, 
we write 

A scale transformation 

and suitable integrations of the Grassmann variables yield 

In the continuum limit 
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For the case of Grassmann valued coupling constans ( g , a )  the path integral (3.9) 
may be readily diagonalized by the following transformations 

(3.10) 

The transformation (3.10), reduces (3.9) to the form 

[. + 11 - [n - 11 
2 4 + W  (3.12) 

A direct evaluation of the partial trace in (3.11) immediately leads to the energy 
eigenspectrum obtained in (2.18). 

For the case of c-number coupling constants ( g , Q )  we rewrite (3.9) as 

Following the route adopted in [SI, we compare (3.13) with the partition function for 
a single spin-1R particle in a constant magnetic field, described by the Hamiltonian 

HlJ = qlq + suo+ t U - a J  (3.14) 

where the coupling constants (gu , &) are c-numbers. The energy eigenvalues of the 
Hamiltonian (3.14) are 

~~ 

E* = 54Q: + 1gu12 (3.15) 

m e  corresponding partition function in the path integral representation [20] reads 

(3.16) 
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A comparison between (3.11) and (3.16) immediately yields the spectrum 
corresponding to 2, as 
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(3.17) 

The above list and the trivial result 

E u = w  (3.18) 

obtained from (3.2) enumerate all the energy eigenvalues of the Hamiltonian (218) 
corresponding to ovalued coupling constants. Expanding the square mot in (3.17) 
and retaining terms upto O(lg1') we obtain 

(3.19) 

We notice that the spectrum in (3.19) is similar to (2.18) apart from the fact that in 
the latter case Grassmann properties of the coupling constants are to be taken into 
account. 

It should be noted that even if we choose the bosonic part of the ( p , q ) - J c  
Hamiltonian to be an arbitrary function of (n, fi) then, as already mentioned, 
precisely the same procedure as outlined above for the case of (2.8) will hold. Here 
we enlist the results corresponding to an alternate Hamiltonian 

H ' =  f lN + w f i  -t gQ t Q'O. (3.20) 

For the Grassmann valued coupling constants, the energy eigenvalues are 

[.I - (3.21) Eo,* tn>u - - fl n + w ( n * l ) + Z w  

and the spectrum for the case of c-number coupling constants reads 

4. Conclusion 

Dcforming the standard JC model we have constructed a two-parameter ( p ,  q ) X  
model and, by employing a path integral realization of the partition function, derived 
the full energy spectrum of the model. The existence of a dynamical symmetry algebra 
in the parent model allows the deformation of the symmetry algebra. We feel that it 
worth investigating the consequences of deformations of solvable models with known 
dynamical symmetries so that one can know what signatures of deformed Sy"etnes 
to look for in order to identify them if they occur in nature. 
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?b conclude let us note the following: relaxing the RWA, we may write a 'dressed' 
( p ,  q)-JC model where the following additional operators, deformed analogue of 
the operators responsible for the virtual and the real two photon transitions, may 
contribute to the Hamiltonian 

R = b f  p t = h t f t  j = & 2  j t = g 2 ,  (4.1) 

The operators in (2.10) and (4.1) generate a new dynamical quantum superalgebra, . . -  
ospp,,i2/2), which embeds up,,( 111). The additional commutation r i a t i o h  for 
OSPp,,(2I2) are 

[N ,.i] = -2.i 

[Ax, 4 = -2.J [ A x ,  ri'] = 0 K * = 0  

[Q , I?] = j [ Q , R t ]  = o  [ R , I i - t ] = [ f i ]  

[N ,k] = - 2 R  

' [.i,I;.] = 0 [ j , Q ] = O  

(4.2) 1 [ . i , j t ] =  [ 2  I [  2 I - [  2 1 1  2 
N + M + 3  N + A x + l  N + M - 3  N + M - 1  

R + + - 1  -, 

[ J , Q t ] = k [ f i + ; + l ] - [  1 
From (2.11) and (4.2) we notice that the operators (Ax, N, R ,  k t )  form a quantum 
subalgebra up,,( 111) c osp,,,(212), different from (2.11) with Ax as the new Casimir 
operator. 

Further, one may also consider the basic boson and fermion oscillators of the JC 
model to be deformed into a pair of supersymmetric oscillators covariant under a 
quantum supergroup [21]. Then, the resulting model is different; in particular the 
deformation of the fermionic mode now has a non-trivial consequence. 

We shall return to this topic in future work. 
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